首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4994篇
  免费   200篇
  国内免费   51篇
测绘学   104篇
大气科学   419篇
地球物理   1269篇
地质学   1668篇
海洋学   479篇
天文学   773篇
综合类   18篇
自然地理   515篇
  2022年   24篇
  2021年   66篇
  2020年   65篇
  2019年   71篇
  2018年   99篇
  2017年   83篇
  2016年   135篇
  2015年   139篇
  2014年   135篇
  2013年   247篇
  2012年   159篇
  2011年   249篇
  2010年   178篇
  2009年   256篇
  2008年   219篇
  2007年   206篇
  2006年   213篇
  2005年   179篇
  2004年   168篇
  2003年   150篇
  2002年   153篇
  2001年   79篇
  2000年   102篇
  1999年   86篇
  1998年   87篇
  1997年   67篇
  1996年   58篇
  1995年   82篇
  1994年   82篇
  1993年   57篇
  1992年   61篇
  1991年   50篇
  1990年   67篇
  1989年   59篇
  1988年   61篇
  1987年   64篇
  1986年   59篇
  1985年   69篇
  1984年   94篇
  1983年   69篇
  1982年   72篇
  1981年   59篇
  1980年   69篇
  1979年   56篇
  1978年   57篇
  1977年   45篇
  1976年   51篇
  1975年   54篇
  1974年   39篇
  1973年   51篇
排序方式: 共有5245条查询结果,搜索用时 234 毫秒
141.
142.
Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States.  相似文献   
143.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   
144.
Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales.  相似文献   
145.
Climate change impacts on U.S. Coastal and Marine Ecosystems   总被引:1,自引:0,他引:1  
Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.  相似文献   
146.
The effects of nutrients, trace elements, and trophic complexity on benthic photosynthesis and respriation were studied in the Paxtuxent River estuary near St. Leonard, Maryland. Experiments were conducted over three years (1995–1997) in mesocosms containing riverine sediment and water. The experimental design was 2×2×3 factorial with two levels of nutrients (ambient and + nutrients), two of trace elements (ambient and + trace elements) and three of trophic complexity (plankton, plankton + fish, and plankton + fish + benthos). Trace elements included arsenic (As), copper (Cu), and cadmium (Cd). The experiment was conducted three times in 1995 and 1997 and four times in 1996. In 1995 and 1996, sediments were muddy, while in the final year sediments were sandy. In mesocoms with sandy sediments, nutrient additions increased benthic photosynthesis overall, while trace element additions increased benthic photosynthesis in two of three experimental runs. Benthic photosynthesis in these mesocosms appeared to be related to nitrogen loading. Benthic respiration increased in nutrient and trace element amended mesocosms with sandy sediments, apparently in response to higher benthic photosynthesis. Increasing trophic complexity, particularly the presence of benthic organisms, also increased benthic respiration in mesocosms with sandy sediments. There were no effects of nutrient or trace element additions on benthic photosynthesis and respiration when the sediments were muddy. The lack of consistent responses to nutrient additions was surprising given that benthic respiration rates (and presumably nutrient regeneration) were similar in all three years, regardless of sediment type. Muddy, sediments did not mask, the effects of nutrient addition by supplying more nutrients to benthic microalgae than sandy sediments. In 1996, the presence of filter feeding bivalves increased the relative heterotrophy of sediments, measured as production: respiration. Consistent with increased heterotrophy, effluxes of ammonium and soluble reactive phosphorus from sediments were greater in mesocosms containing benthic organisms. Anthropogenically-induced changes in estuaries, such as loading of nutrients and trace elements or reduced trophic complexity, can have important effects on benthic processes and potentially pelagic processes through feedback mechanisms.  相似文献   
147.
A data reduction method is described for determining platinum-group element (PGE) abundances by inductively coupled plasma-mass spectrometry (ICP-MS) using external calibration or the method of standard addition. Gravimetric measurement of volumes, the analysis of reference materials and the use of procedural blanks were all used to minimise systematic errors. Internal standards were used to correct for instrument drift. A linear least squares regression model was used to calculate concentrations from drift-corrected counts per second (cps). Furthermore, mathematical manipulations also contribute to the uncertainty estimates of a procedure. Typical uncertainty estimate calculations for ICP-MS data manipulations involve: (1) Carrying standard deviations from the raw cps through the data reduction or (2) calculating a standard deviation from multiple final concentration calculations. It is demonstrated that method 2 may underestimate the uncertainty estimate of the calculated data. Methods 1 and 2 do not typically include an uncertainty estimate component from a regression model. As such models contribute to the uncertainty estimates affecting the calculated data, an uncertainty estimate component from the regression must be included in any final error calculations. Confidence intervals are used to account for uncertainty estimates from the regression model. These confidence intervals are simpler to calculate than uncertainty estimates from method 1, for example. The data reduction and uncertainty estimation method described here addresses problems of reporting PGE data from an article in the literature and addresses both precision and accuracy. The method can be applied to any analytical technique where drift corrections or regression models are used.  相似文献   
148.
Petrographic and geochemical studies of an Upper Eocene reef and associated basinal sediments from the mixed carbonate–siliciclastic fill of the south‐eastern Pyrenean foreland basin near Igualada (NE Spain) provide new insights into the evolution of subsurface hydrology during the restriction of a marine basin. The reef deposits are located on delta‐lobe sandstones and prodelta marls, which are overlain by hypersaline carbonates and Upper Eocene evaporites. Authigenic celestite (SrSO4) is an important component in the observed diagenetic sequences. Celestite is a significant palaeohydrological indicator because its low solubility constrains transportation of Sr2+ and SO42? in the same diagenetic fluid. Stable isotopic analyses of carbonates in the reef indicate that meteoric recharge was responsible for aragonite stabilization and calcite cementation. Sulphur and oxygen isotope geochemistry of the celestite demonstrates that it formed from residual sulphate after bacterial sulphate reduction, but also requires that there was a prior episode of sulphate recycling. Meteoric water reaching the reef and basinal areas was most probably charged with SO42? from the dissolution of younger Upper Eocene marine evaporites. This sulphate, combined with organic matter present in the sediments, fuelled bacterial sulphate reduction in the meteoric palaeoaquifer. Strontium for celestite precipitation was partly derived in situ from dissolution of aragonite corals in the reef and basinal counterparts. However, 87Sr/86Sr data also suggest that Sr2+ was partly derived from dissolution of overlying evaporites. Mixing of these two fluids promoted celestite formation. The carbonate stable isotopic data suggest that the local meteoric water was enriched in 18O compared with that responsible for stabilization of other reefs along the basin margin. Furthermore, meteoric recharge at Igualada post‐dated evaporite deposition in the basin, whereas other parts of the same reef complex were stabilized before evaporite formation. This discrepancy resulted from the spatial distribution of continental siliciclastic units that acted as groundwater conduits.  相似文献   
149.
We apply iterative resolution estimation to least‐squares Kirchhoff migration. Reviewing the theory of iterative optimization uncovers the common origin of different optimization methods. This allows us to reformulate the pseudo‐inverse, model resolution and data resolution operators in terms of effective iterative estimates. When applied to Kirchhoff migration, plots of the diagonal of the model resolution matrix reveal low illumination areas on seismic images and provide information about image uncertainties. Synthetic and real data examples illustrate the proposed technique and confirm the theoretical expectations.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号